

# Use of filter based light transmission techniques to measure aerosol light absorption properties

Daniel Hooper
Lawrence Berkeley National Laboratory

#### Consequences of aerosol light absorption



Global climate change Regional climatic effects Reduced visibility



LAWRENCE BERKELEY NATIONAL LABORATORY

#### **Research Experience**



- Analyze fine particulate matter samples collected on quartz filters
- 2 wavelength Aethalometer (light transmission device)
- Light transmission [370nm (UV)-850 nm (IR)] measured with Multiwavelength Light Transmitter (MWLT)
- Carbon content and light transmission measured simultaneously using a new thermal Evolved Gas Analysis device (EGA)
- Samples: controlled wood fires (Redwood and Oak) urban air (Berkeley, CA)

#### **Light Transmission Method**





• Optical property of quartz filter minimizes influence of particle light scattering, renders method sensitive mainly to particle light absorption

#### What is Attenuation?





 The decrease in intensity of a signal, beam, or wave as a result of absorption of energy and scattering over a given distance

 $I\lambda = Io, \lambda \exp(-\beta \lambda x)$ 

Io,  $\lambda$  = initial light intensity at y wavelength

I,  $\lambda$  = light intensity after passing through the atmosphere containing absorbing particles

 $b\lambda$  = extinction coefficient (m-1)

x = path length of polluted atmosphere (m)

 $b\lambda = \sigma\lambda C$ 

 $\sigma\lambda$  = particle absorption coefficient (m2/g)

C = concentration of absorbing species (g/m3)

ATN = -100ln(I/Io)

#### Multi Wavelength Light Transmitter (MWLT)





- Light sources in the MWLT:
- 370nm LED
- 400nm LED
- 470nm LED
- 570nm LED
- 660nm LED
- 850nm LED
- 15 W light Bulb
- Equation of ATN:
- -100ln[(l/lo)]

## Comparison of Spectral ATN Measurements, 08August03 Wood Smoke Sample



#### Dependence of Spectral Absorption Trend on Aerosol Type



### Evolved Gas Analysis Device (EGA)



- Carbon content and light transmission measured simultaneously
- Converts gases into CO2 using O2
- Equation of ATN:
  - -100ln(I/lo)
- Two furnaces capable of maintaining different temperatures



## **Carbon Thermogram**



Berkeley Sample (Front Quartz) Collected (230603) on 90mm Filter



## **EGA** optical readings





- Two glass rods connect and allow the LED light to transmit through the filter
- Can use multiple LED's at different intensities
- Can use multiple optical filters which attach to the picoammeter

## AVERAGE +/- STDEV Photodiode Response to Increasing Sample Furnace Temperature (no optical interference filter)





## Optical Interference Testing (22-230703) (LED's and Matching Optical Filters)





#### **Optical Interference Testing (22-230703)**





## Berkeley Sample (Front Quartz) Collected (230603) on 90mm Filter





### **Aethalometer Collection Process**





 Small pump pulls in sample air at 30 L/min

#### Path of the air

- Enters system through the "hat"
- Large particles are extracted by the impactors
- Air enters both aethalometers at 3 L/min and the filter sample at 21 L/min

## **Fire Sample Data**





## **Summary**



- Light absorption is not constant over the wavelength spectrum
- Light absorbance varies with different types/compositions of air pollution
- Can use three different machines to distinguish the different absorption properties and composition of multiple air samples



### **Shout Outs**

Props to Dr. Tom Kirchstetter

Thank you GCEP for keeping it real

**HOLLER!**